The QuadCAT Four-Way Catalytic Converter

An Integrated Emission Control System for Diesel Engines

presented to the:

February 3, 2000

Ceryx Vision

Systems that balance Cost, Performance, **Emissions** Reduction, and Fuel Penalty to make the economics of pollution control viable

Emissions Reduction Cost **Fuel Penalty Performance** ceryx

Emission Standards U.S. and Europe

	HC	CO	PM	NOx
	grams	per brake	horsepou	ver hour
1998 Baseline	1.3	15.5	0.1	4.0
2004 U.S. Federal (2002)	0.5	15.5	0.1	2.0
	(62%)*	(0%)	(0%)	(50%)
Euro IV (2005)	0.4	1.1	0.015	2.6
	(69%)	(93%)	(85%)	(35%)
ULEV (Clean Fleet Program)	N/A	7.1 (46%)	0.05 (50%)	2.8 (30%)

*Percent reduction in relation to baseline

Emission Standards: Japan

CO HC NOx PM grams per kilometer (mean)

Passenger Cars				
<1265 kg (1997)	2.10	0.40	0.40	0.08
<1265 kg (2002)	0.63	0.12	0.28	0.052

Commercial Vehicles		_		
2,500-12,000 kg (1997/98)	7.40	2.90	4.50	0.25
>12,000 kg (2004)	2.22	0.87	3.38	0.18

QuadCAT Flow Schematic

Integrate heat transfer and chemistry for simultaneous reduction of NOx, CO, HC, & PM

Temperature Profile Over 8-Mode Heavy-Duty Cycle

Chemical Reactor Platform

- Recycle heat from exothermic reactions
- Increase catalyst temperature
- © Effectiveness defined as:

$$\eta = (T_1 - T_{in})/(T_2 - T_{in})$$

Experimental Data with Light-Duty Prototype on 200 Hp Engine

Integration Makes Full Use of Resources

Injecting supplementary HC provides:

Energy source for DPF regeneration HC + O₂ → Heat

Reducing agent for NOx catalyst $HC + NOx + O_2 \rightarrow CO_2 + H_2O + N_2$

Diesel Particulate Filters

- Very high filtration efficiency (>90%)
- Variety of configurations
- © Regeneration requires elevated temperatures to oxidize PM:

 - ⊙ 380°C-450°C Catalyzed
 - 200°C-400°C with fuel borne additives such as cerium or platinum

Lean NOx Catalysts

- Many formulationswith varioustemperature windows
- Best reductions at elevated temperatures
- © Low-cost, nonprecious metal based catalyst are durable and sulfur tolerant
- © Could benefit from QuadCAT recuperative approach

Lean NOx Catalyst Mechanism

Ceryx Offers Multiple Configurations in a Single Platform

<u>Product</u>	<u>HC</u>	<u>co</u>	<u>PM</u>	<u>NOx</u>
© LeanCAT™ (Lean NOx Catalyst +DOC)	>90%	>90%	>30%	30-50%
	>90%	>90%	>90%	30-50%
	>90%	>90%	>90%	>90%

QuadCAT Prototype Testing

Results: NOx Reduction

Results: PM Reduction

DPF Regeneration Data

The QuadCAT System

Heat Recovery & Pressure Drop Recuperator and Catalyst

Summary of Testing

- "Proof of concept' demonstrated
- 30-60% heat recovery
- Acceptable back-pressure
- > 80% PM reduction
- © Up to 45% NOx reduction depending on amount of fuel injected

Summary: The QuadCAT 4-way Catalytic Converter

Elements Recuperator

Features

- Elevate catalyst temperature by recycling heat
- Noise abatement (replaces muffler/silencer)
- Fuel Injection and ControlSystem
- Simultaneous oxidation & reduction with controlled HC injection
- Rich cycling and high temperature cycling to reverse sulfur poisoning
- Regenerate DPF on demand, OR
- Optimize for NOx reduction

© Lean NOx Catalyst

- Reduce NOx with HC as a reductant
- > Non-precious metal based

DPF/DOC

- Filter and oxidize PM
- Oxidize CO and HC
- DOC is non-precious metal based

Light-Duty QuadCAT Converter

A QuadCAT
 Converter
 field unit
 installed on
 a Ceryx test
 vehicle

